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Effects of ion temperature on electrostatic solitary structures in nonthermal plasmas

A. A. Mamun
Department of Physics, Jahangirnagar University, Savar, Dhaka, Bangladesh

~Received 23 August 1996!

Effects of ion temperature on compressive and rarefactive ion-acoustic solitary waves, which have been
found to coexist in non-thermal plasmas, are investigated by the pseudopotential approach, which is valid for
arbitrary amplitude solitary waves. It is shown that the effects of ion temperature change the minimum value
of a ~the parameter that determines the number of nonthermal electrons present in the plasma under consid-
eration! as well asM ~the Mach number! for which these solitary waves coexist and also change the width and
amplitude of these solitary waves. It is also shown that for cold ions, the present results completely agree with
the existing published results@Cairnset al., Geophys. Res. Lett.22, 2709~1995!; J. Phys.~France! IV 5, C6-43
~1995!#. @S1063-651X~97!05001-0#

PACS number~s!: 52.25.2b
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I. INTRODUCTION

The study of electrostatic solitary waves in plasmas
received considerable attention because of its vital role
understanding the nonlinear features of localized elec
static disturbances in laboratory plasmas@1–3# as well as in
space plasmas@4–6# and has been extensively studied in t
past few years@7–11#. It is found theoretically and con
firmed experimentally that if the ions are assumed to resp
as a fluid to perturbations in the potential, with no significa
trapping in a potential well, a thermal plasma supports o
compressive solitary waves~solitary structures with density
compression!, but not rarefactive ones~solitary structures
with density depletion!. Recently, motivated by the observ
tions of solitary structures with density depletions made
the Freja and Viking satellites@12,13#, Cairnset al. @14,15#
have considered a plasma consisting of nonthermally dis
uted electrons and cold ions and shown that it is possibl
obtain both positive~compressive! and negative~rarefactive!
solitary waves. As an extension and natural developmen
these investigations@14,15#, the present work has considere
the same plasma system, where ions are no longer cold,
studied the effects of ion temperature on the compressive
rarefactive solitary waves that have been found to coexis
this nonthermal plasma model. This paper is organized
follows. The basic equations are given in Sec. II. The
temperature effects on one-dimensional solitary structu
have been studied by the pseudopotential approach in
III. This study has then been extended to three-dimensio
structures in Sec. IV. Finally, a brief discussion is given
Sec. V.

II. GOVERNING EQUATIONS

We consider a plasma system consisting of warm a
batic ions and nonthermally distributed electrons. The ba
system of equations governing the ion dynamics in t
plasma system is given by@16–18#
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1u•“P1gP“•u50, ~3!

¹2w5ne2n, ~4!

wheren (ne) is the ion~electron! density normalized to the
unperturbed ion densityn0; s5Ti /Te , with Ti (Te) being the
ion ~electron! temperature;u is the ion fluid velocity normal-
ized to the ion-acoustic speedCs5(kBTe/m)

1/2, with kB and
m being the Boltzmann constant and ion mass, respectiv
P is the ion pressure normalized to (n0kBTi); g5(21N)/N,
with N being the number of degrees of freedom~which has
value 1 for the one-dimensional case and 3 for the thr
dimensional case!; w is the electrostatic potential normalize
to kBTe/e, with e being the electronic charge; the space va
able is normalized to the Debye leng
lD5(kBTe/4pn0e

2)1/2 and the time variable is normalize
to the ion plasma periodv p

215(m/4pn0e
2)1/2. As electrons

are assumed to be nonthermally distributed, to model
electron distribution with a population of fast particles w
can choose the distribution function as was chosen by Ca
et al. @14,15#. Therefore, without details, the electron dens
ne in Eq. ~4! is directly given by@14,15#

ne5~12bw1bw2!ew, ~5!

b5
4a

113a
, ~6!

wherea is a parameter determining the fast particles pres
in our plasma model.

III. ONE-DIMENSIONAL SOLITARY STRUCTURES

We will confine ourselves, in this section, to a study
solitary waves in our nonthermal plasma model for on
dimensional structures. The basic equations, in the o
dimensional case whereg53, can be expressed as
1852 © 1997 The American Physical Society
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]2w

]x2
5~12bw1bw2!ew2n. ~10!

To obtain a solitary wave solution, we make all the dep
dent variables depend on a single independent variablej5x
2Mt, whereM is the Mach number~the velocity of the
solitary wave normalized to the ion-acoustic speedCs!. Con-
sidering the steady-state condition, i.e.,]/]t50, we can write
our basic set of equations as

M
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~nu!50, ~11!
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50, ~13!

]2w

]j2
5~12bw1bw2!ew2n. ~14!

Now, under the appropriate boundary conditions, viz.,w→0,
u→0, P→1, andn→1 at j→6`, Eqs.~11! and~13! can be
integrated to give

n5
1

12u/M
, ~15!

P5n3. ~16!

If we substitute Eq.~15! into Eq. ~12! and then multiply this
by 2, we obtain

2M
]u

]j
22u

]u

]j
22s

]P

]j
12

s

M
u

]P

]j
52

]w

]j
. ~17!

Again, multiplying Eq.~13! by s/M one can write

s
]P

]j
2

s

M
u

]P

]j
23P

s

M

]u

]j
50. ~18!

Now, subtracting Eq.~17! from Eq. ~18!, one can get a dif-
ferential equation that has the form

3s
]P

]j
23

s

M

]

]j
~Pu!22M

]u

]j
12u

]u

]j
12

]w

]j
50.

~19!

The integration of this equation yields
-

3
s

M
Pu23s~P21!12Mu2u222w50, ~20!

where we have used the same boundary conditions,
w→0, u→0, P→1, andn→1 at j→6`. Substitutingu and
P, obtained from Eqs.~15! and ~16!, respectively, into this
equation, one can obtain a quadratic equation forn2 as

~3s!n42~3s1M222w!n21M250. ~21!

Therefore, the solution of this equation forn is given by

n5
s1

&s0
F12

2w

M2s1
22AS 12

2w

M2s1
2D 224

s0
2

s1
4G1/2,

~22!

where

s05A3s/M2, s15A11s0
2. ~23!

The substitution of this expression forn into Eq. ~14! gives

d2w

dj2
5~12bw1bw2!ew2

s1

&s0
F12

2w

M2s1
2

2AS 12
2w

M2s1
2D 224

s0
2

s1
4G1/2. ~24!

The qualitative nature of the solutions of this equation
most easily seen by introducing the Sagdeev potential@19#.
Therefore, Eq.~24! takes the form

d2w

dj2
52

dV~w!

dw
, ~25!

where the Sagdeev potentialV~w! is given by

V~w!52@113b~12w!1bw2#ew

2M2As0~e
u/21 1

3e
23u/2!1C1 , ~26!

u5cosh21F s1
2

2s0
S 12

2w

M2s1
2D G ~27!

andC1 is the integration constant that we will choose in su
a manner thatV~w!50 at w50. It is important to note here
that we cannot consider the limits→0 in the Sagdeev po
tentialV~w! in its present form. To consider this limits→0,
we expressu as

u5 lnF s1
2

2s0
S 12

2w

M2s1
2D 1A s1

4

4s0
2 S 12

2w

M2s1
2D 221G .

~28!

It is also important to mention that in our study the conditi
for ion density to be real,u122~w/M2s1

2!u>2s0/s1
2, must al-

ways be satisfied. Using Eq.~28!, we can express the
Sagdeev potentialV~w! as
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V~w!52@113b~12w!1bw2#ew

2
M2s1

&
F12

2w

M2s1
2 1AS 12

2w

M2s1
2D 224

s0
2

s1
4G1/2

2
2&s

s1
3 F12

2w

M2s1
2 1AS 12

2w

M2s1
2D 224

s0
2

s1
4G1/2

1C1 . ~29!

Now, we are again returning to our general equation,
~25!, which can be regarded as an ‘‘energy law’’ of an o
cillating particle of unit mass with velocitydw/dj and posi-
tion w in a potentialV~w!. The solitary wave solutions of Eq
~25! exist if ~i! (d2V/dw2)w50,0, so that the fixed point a
the origin is unstable, and~ii ! V~w!,0 when 0,w,wmax for
positive solitary waves and 0.w.wmin for negative solitary
waves, wherewmax~min! is the maximum~minimum! value of
w for whichV~w!50. The general results can be obtained
follows. The nature of these solitary waves, whose amplit
tends to zero as the Mach numberM tends to its critical
value, can be found by expanding the Sagdeev potentia
third order in a Taylor series inw. The critical Mach number
is that which corresponds to the vanishing of the quadr
term. At the same time, if the cubic term is negative, there
a potential well on the negative side and if the cubic term
positive, there is a potential well on the positive side. The
fore, by expanding the Sagdeev potentialV~w!, given by Eq.
~29!, around the origin the critical Mach number, at whi
the second derivative changes sign, can be found as

Mc5A 1

2~12b!
@11A1112s~12b!# ~30!

and at this critical value ofM the third derivative is negative
i.e., rarefactive solitary waves exist, if

Sa,0,

Sa5
1

2S0
2 S 1119

s

S0
D2

1

6
, ~31!

S05
1

2~12b!
@11A1112s~12b!#.

This gives us a very simple criterion for analyzing the ran
of different parameters, viz.,a and s, for which the com-
pressive and rarefactive types of solitary waves exist. I
obvious that the consideration of cold ion limit~s50! cor-
responds to our earlier work@14,15#, where we have shown
that the minimum value ofa for which compressive and
rarefactive solitary waves co-exist is;0.155 and that for
a50.2 the critical Mach number~the minimum value of the
Mach number above which the compressive and rarefac
solitary waves coexist! is&. It is clear from Eqs.~29!–~31!
that the Sagdeev potentialV~w!, the critical Mach number
Mc ~which we can now define as that minimum value ofM
above which compressive as well as rarefactive solit
waves exist!, andSa ~which determines the criterion for th
coexistence of compressive and rarefactive solitary wav!
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nonlinearly depend ons, i.e., on ion temperature. Figure
shows how the minimum value ofa, for which compressive
and rarefactive solitary waves coexist, changes withs, i.e.,
with ion temperature. This shows that as the ion tempera
increases, we need more nonthermal electrons in order
rarefactive solitary waves to exist. We have already show
that fora50.2 the critical Mach number is&, but due to the
effect of the ion temperature this value changes. The plo
Fig. 2 shows how the critical Mach number changes witha
ands. It is clear that as the ion temperature increases,
critical Mach number (Mc) increases. It is observed that, fo
cold ions, i.e.,s50, and fora50.2 ~a value that we shal
continue to use in the rest of our numerical illustrations!, the
compressive and rarefactive solitary waves are found to
exist when the Mach number passes the value&.1.414, but
for s50.02, the rarefactive solitary waves do not exist un
the Mach number exceeds the value 1.435. Figure 3 sh
the behavior of the Sagdeev potentialV~w! when the Mach
number passes from 1.43 to 1.45. This shows that when
Mach number exceeds the value 1.435, a potential w
forms on the negativew axis, resulting in the existence o
rarefactive solitary waves. To find what happens on the p
tive side, we plot curves for the same set of parameters o
larger scale. This is shown in Fig. 4, where it is seen that
compressive solitary waves also exist.

Now, to see what happens when the ion temperatur
further increased, we numerically study the behavior of
Sagdeev potentialV~w! and find the parameters for whic
compressive and rarefactive solitary waves may coex
These are displayed in Figs. 5 and 6. It is seen from Fig
that whens50.04, rarefactive solitary waves no longer ex
for M51.45~we have already found that, for values less th
this, rarefactive solitary waves exist whens50.02!, but
when it exceeds this value, the rarefactive solitary wa
start to exist. Figure 6, where the behavior of the Sagd

FIG. 1. Effect of ion temperature on the minimum value ofa for
which compressive and rarefactive solitary waves coexist.
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potential is shown for the same set of parameters on a la
scale, shows what happens on the positivew axis. It is shown
that as we increase the ion temperature, we need a hi
Mach number in order to obtain the coexistence of comp
sive and rarefactive solitary waves. Figure 7 shows the
fects of the ion temperature on potential profiles for tw

FIG. 2. Effect of ion temperature on the variation of the critic
Mach number witha.

FIG. 3. Behavior of the Sagdeev potentialV~w! for a50.2,
s50.02, and a series of Mach numbers: 1.43~top! in steps of 0.005
to 1.45~bottom!.
er

er
s-
f-

~compressive and rarefactive! solitary wave solutions found
by solving Poisson’s equation with exactly the same para
eters, but different initial conditions. It is found that as t
ion temperature increases, the amplitude of both the c
pressive and rarefactive solitary waves decreases, whe
their width increases.

l

FIG. 4. Behavior of the Sagdeev potentialV~w! on a larger scale
for a50.2, s50.02, and a series of Mach numbers: 1.43~top! in
steps of 0.005 to 1.45~bottom!.

FIG. 5. Behavior of the Sagdeev potentialV~w! for a50.2,
s50.04, and a series of Mach numbers: 1.45~top! in steps of 0.005
to 1.47~bottom!.
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IV. THREE-DIMENSIONAL SOLITARY STRUCTURES

The solitary structures, discussed up to now, are one
mensional. In the present section, we will switch our att
tion to three-dimensional solitary structures, since the str
tures observed in space are certainly not infinite in t
directions. A very simple three-dimensional analog of t

FIG. 6. Behavior of the Sagdeev potentialV~w! on a larger scale
for a50.2, s50.04, and a series of Mach numbers: 1.45~top! of
0.005 to 1.47~bottom!.

FIG. 7. Potential profiles fora50.2,M51.455, ands50 ~solid
curve!, s50.02 ~dotted curve!, ands50.03 ~dashed curve!.
i-
-
c-
o
e

structures, discussed in the preceding section, can be
structed by assuming that they are moving parallel to
strong magnetic field. If the ion Larmor radius is small com
pared to this size of the structure, we can just consider
ions to be a beam flowing along the field lines~in the rest
frame of the structure!. The ion densityn then just depends
on the potential, as before, and is given by Eq.~22!. We also
assume that the electrons have the same kind of adiab
response and that the one-dimensional distribution, con
ered up to now, is obtained by integrating over the para
degrees of freedom. Thus the electron densityne is also the
same and is directly given by Eq.~5!. Therefore, under thes
assumptions, Poisson’s equation, Eq.~4!, can be expressed in
the spherically symmetric case as

d2w

dr2
1
2

r

dw

dr
5~12bw1bw2!ew2

s1

&s0
F12

2w

M2s1
2

2AS 12
2w

M2s1
2D 224

s0
2

s1
4G1/2, ~32!

where the space variabler is normalized to the Debye lengt
lD . We will now solve this equation numerically and fin
spherically symmetric structures that exist as solutions
this equation. It is important to note here that, in our nume
cal solutions of this equation, the condition for ion density
be real,u122~w/M2s1

2!u>2s0/s1
2, must always be valid. The

potential profiles in a spherically symmetric solution of th
equation are illustrated in Fig. 8. These plots also show
effects of ion temperature on these radial profiles. The m
obvious change, found by comparing these radial profi
with one-dimensional structures~discussed in Sec. III!, is

FIG. 8. Radial potential profiles for spherically symmetric so
tary structures and for the same parameters used in Fig. 7,
a50.2,M51.455, ands50 ~solid curve!, s50.02 ~dotted curve!,
ands50.03 ~dashed curve!.
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that there is a larger dip in the potential for the same par
eters. It is also seen that as we increase the ion tempera
this dip in the potential decreases.

V. DISCUSSION

Motivated by the observations of solitary structures w
density depletions made by the Freja and Viking satell
@12,13#, Cairnset al. @14,15# have shown that the presence
nonthermal electrons changes the properties of the ion so
solitary waves and that for a suitable nonthermal elect
distribution it is possible to obtain both positive~compres-
sive! and negative~rarefactive! solitary waves. The presen
investigation is mainly concerned with ion temperature
fects on these solitary structures. It is found that as we
crease the ion temperature, we need more nonthermal
trons and higher Mach number in order for rarefact
solitary waves to exist. It has also been shown that as the
temperature rises, the amplitude of both the compressive
rarefactive solitary waves decreases, whereas the widt
these solitary waves increases. Three-dimensional struc
have also been studied. The most obvious change is
there is a larger dip in the potential for the same paramet
It is also seen that as we increase the ion temperature,
ma
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of
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dip in the potential decreases. It should be mentioned tha
cold ions, the present analysis gives the same results a
have found in our earlier works@14,15#.

This analysis may be of relevance to observations in
magnetosphere of density depressions@12,13#. A possible
scenario is that lower hybrid turbulence produces, throu
modulational instability, cavities that collapse until the low
hybrid wave amplitude is sufficient to trap and accelerat
substantial number of electrons@10,11#. The damping of the
turbulence could then leave a cavity and also create just
kind of energetic electron population necessary for it to l
on as an ion-acoustic solitary structure no longer suppo
by the ponderomotive pressure of the high-frequency tur
lence. However, the type of electron distribution we ha
looked at is common to many space and laboratory plas
in which wave damping produces an electron tail, so
theory may be of more general interest.
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